• 粒徑分佈分析圖中DV(0.1), DV(0.5), DV(0.9)代表意義
    許多統計參數可以從粒度分佈中得出。累積分佈特別適用於此目的。其中最重要的參數當然是百分位數。在每種情況下,這些都表示一定數量的樣本所在的大小 x。例如,百分位數回答了“10% 的最小粒子在哪個尺寸以下?”的問題。或“大於 5% 的最大顆粒是多少?”百分位數可以直接從 Q 或 1-Q 曲線中讀取。 百分位數由字母 d 後跟 % 值表示。因此,d10 = 83 µm,d50 = 330 µm,d90 = 1600 µm 表示 10% 的樣品小於 83 µm,50% 小於 330 µm,90% 小於 1600 µm。替代符號為 x10/50/90 或 D 0.1/0.5/0.9 d50 值也稱為“中值”,它將粒度分佈劃分為等量的“較小”和“較大”顆粒。通常報告粒度分佈的 d10、d50 和 d90。 這樣可以很容易地用三個值來表徵分佈的中點或中心點,以及上端和下端。這個規範並不總是有用的,但它通常提供了一個很好的概述。可以定義任意數量的百分位值,例如d16, d84, d95, d99 等。但是,還必須注意測量方法的靈敏度是否足以可靠地檢測接近 0% 或接近 100% 的百分位數。 d100 值沒有明確定義,因此沒有意義。如果 100% 的粒子小於 2 毫米,那麼對於所有較大的 x 值也是如此,這也是 d100 值。 該圖顯示瞭如何直接從累積曲線中讀取百分位數。
  • 光學測量技術的發展使粒狀物質的顆粒形狀表徵能夠以快速的過程速度進行
    除了顆粒大小和 zeta 電位外,顆粒濃度通常對於確定有多少顆粒分散在液體中或每個尺寸等級存在多少顆粒很重要。 該信息非常有用,例如,用於確定製藥行業中藥物的治療窗口或墨水或油漆的不透明度指示。 這些只是幾個例子,還有更多的應用。 借助 Microtrac 的動態光散射 (DLS) 分析儀系列 NANOTRAC,現在不僅可以測量顆粒大小、分子量和 zeta 電位,還可以獲得有關顆粒濃度的其他信息。 Nanotrac 系列的不同型號如下圖所示。
  • MIE 散射和 MIE 理論
    因為粒子的表面由於電子的存在而產生電磁場,並且由於光代表電磁輻射,所以它可以相互作用產生一種被描述為米氏散射或衍射的現象。 Mie 散射以及相應的 Mie 理論以德國物理學家 Gustav Mie (1868-1957) 的名字命名,他在 20 世紀初首次計算了這種現象。 米氏散射,在入射光方向上離粒子一定距離,是一種模式,將根據粒子的大小和入射光的波長而發展。從這個 Mie 散射圖案中可以獲得與材料尺寸分佈相關的信息。 有些材料不透光並吸收能量。在這些情況下,可以假設該物質具有極高的折射率以及很大的虛構成分(參見下面的透明粒子)。在這些條件下,計算可以是弗勞恩霍夫理論所描述的那些。 光也可以從物質表面反射,使用這些數據進行尺寸測量將是一個不同的問題。 第三次發生的相互作用是當材料有點透明時發生的一種特殊情況。在這種情況下,光穿過粒子就像穿過鑽石一樣。在鑽石的情況下,它會折射並產生眾所周知的閃光;然而,當穿過一個粒子時,它可能會增加米氏散射/衍射圖案。這種影響將在下面討論。
  • ZETA 電位測量
    當液體中存在顆粒、液滴或膠體時,通常會形成由液體中的離子組成的雙電層。 這是因為粒子表面通常帶有對這些離子有吸引力的表面電荷。 如果粒子在液體中移動,則雙電層會隨之移動,沿所謂的滑移面,即雙電層與周圍液體的界面。 這個滑動平面上的電勢是 zeta 電勢。 Zeta 電位以毫伏為單位,通常在 -200 mV 和 + 200 mV 之間的範圍內。米氏散射,在入射光方向上離粒子一定距離,是一種模式,將根據粒子的大小和入射光的波長而發展。從這個 Mie 散射圖案中可以獲得與材料尺寸分佈相關的信息。 有些材料不透光並吸收能量。在這些情況下,可以假設該物質具有極高的折射率以及很大的虛構成分(參見下面的透明粒子)。在這些條件下,計算可以是弗勞恩霍夫理論所描述的那些。 光也可以從物質表面反射,使用這些數據進行尺寸測量將是一個不同的問題。 第三次發生的相互作用是當材料有點透明時發生的一種特殊情況。在這種情況下,光穿過粒子就像穿過鑽石一樣。在鑽石的情況下,它會折射並產生眾所周知的閃光;然而,當穿過一個粒子時,它可能會增加米氏散射/衍射圖案。這種影響將在下面討論。
  • 測量以雷射燒蝕法製備的奈米金、銀、白金顆粒粒徑
    通過雷射燒蝕安裝在目標膠囊中的固體金屬產生奈米顆粒,會想用此方法是因為以化學法生產的膠體奈米顆粒通常含有大量的配體、表面活性劑和離析物殘留物,若改以這種合成方法便可以保證奈米材料的純度。
  • 碳黑結構的各種參數測量手法
    碳黑被廣泛地被用作橡膠/塑料填料、顏料或電極材料,其主要結構為初級粒子組成的最小單位團聚體結構(初級聚集體)或由初級團聚體組成的二級聚集體,而碳黑的物理性質可以主要從粒徑、顆粒表面性質(官能團的存在和分佈)和結構(聚集體形成的程度)來判斷,本篇文章中,碳黑的物理性質將被各種測量方法評估。