

Collaboration with Solina

GranuTools instrument range

Measurables

What do we want to measure:

- Flowing properties
 - Volume or mass per unit of time, Angle of repose or Dynamic angle
- Cohesion (via the cohesive index) = "Probability" not to flow
 - Powder requires energy to start flowing
 - Two different but complementary aspects
- Tribo-electrification
 - Can cause cohesion to fluctuate inside a machine, device or process
 - Measuring cohesion only is not enough

GRANUFLOW™
GRANUPACK™
GRANUHEAP™
GRANUDRUM™

GranuDrum instrument

Instrument description

Analyse the flow inside a rotating drum

Cohesive index – physical interpretation

Dynamic angle of repose measurement

GranuDrum results

Flowability measurements

Bratwurst and Chips were too sticky to be measured

Marinade_hot exhibits the best flowability

- Less cohesive (due to grains sizes?)
- Probably easier to mix

The GranuHeap instrument

Principle: analyzing the shape of a heap

Non cohesive graunular

Cohesive powder

Method:

Static angle (angle of repose) $lpha_s$ Cohesive index σ_s

GranuHeap results

The GranuPack instrument

Evolution of the density of a pile submitted to a series of taps

Measurables:

- ✓ Apparent (bulk) density
- ✓ Tapped density
- ✓ Hausner ratio
- ✓ Dynamical parameter n½

GranuPack results

- We can classify the powders according to their Hausner ratio
- Lower **n½** -> faster packing

Sample Name	ρ(0) (g/ml)	ρ(n) (g/ml)	n½	Hr
Marinade_hot	0,659	0,755	20,4	1,15
Inject_mix	0,780	0,930	<mark>17,9</mark>	1,19
Marinade_herb	0,560	0,684	23,9	1,22
Chips	0,440	0,585	29,5	1,33
Bratwurst	0,481	0,755	34,4	1,57

- Marinade_hot: lower cohesion
- Inject_mix: faster packing
- > Bratwurst : High Hr / very cohesive

GRANU TOOLS

Caking problem

Humidity

Forces acting on grains

- Gravity
- Contact forces (friction, elasticity)
- van der Waals forces
- Electrostatic forces
- Capillary forces
- Hydrodynamic forces

Cohesive forces

Grains properties

- Size
- Shape
- Surface
- Physico-chemical properties

Caking problem Influence of humidity ρ(0) (g/ml) $\rho(n) (g/ml)$ **Sample Name** n½ Hr 20,4 Marinade_hot 0,659 0,755 1,15 Marinade_hot_83 0,635 0,739 42,6 1,16 0,8 40 35 0,75 30 Bulk density (g/ml) **Cohesive Index** ----Marinade_hot -Marinade_hot_83 10 **─** Marinade_hot Marinade_hot_83 0,55 5 0 0,5 10 20 30 40 50 60 **70** 0 500 0 100 200 300 400 **Rotating speed (rpm) Tap number**

Conclusions

- GranuDrum:
 - ➤ Marinade_hot exhibits the best flowability with a shear-thinning behaviour
- GranuHeap:
 - ➤ Powders can be classified accurately according to their angle of repose
 - Simple and fast measurement
- GranuPack:
 - Very accurate: allows to discriminate slight differences between batches
 - Powder are precisely classified from their Hausner ratio
 - ➤ Access to the whole packing curve
 - Dynamical parameter n1/2 gives insight on the packing velocity

