

Stopping Aggregation Measuring and Predicting Stability

Protein Stabilisation The mechanical option

- We can stabilise a protein by changing the primary structure
 - Genetic engineering of amino acid sequence in order to strengthen protein
 - Trade-off Rigid protein is less functional
- We can also add polymer chains to the surface in order to sterically inhibit aggregation
- Pegylation, for instance, is often used to stabilise proteins
 - Pegloticase, for instance, is a stable pegylated Uricase used to treat gout.

PEGylated Proteins – SEC Compositional Analysis

PEGylated Proteins – SEC Compositional Analysis

PEGylated Proteins – SEC Compositional Analysis

Membrane Proteins

- > Membrane protein in detergent
- > Micelles: $M_W = 63 \text{ kDa}$
- Protein-Detergent-Complex
 (PDC): M_W = 75 kDa
- PDC contains 46 % protein and 54 % detergent

Protein Stabilisation The formulation option

• Add formulation components that increase the favourability of the native, unaggregated state

• Arginine, for instance has been shown to inhibit the aggregation of numerous proteins

- The affect of any formulation component is heavily dependent on protein structure
 - Screening of formulations to measure their effect is essential

Stopping Aggregation Formulation Optimisation

LATE STAGE SCREENING Information is key

EARLY STAGE SCREENING Sample Consumption is key

INTERACTION ANALYSIS How are excipients interacting with protein

What is Differential Scanning Calorimetry (DSC)?

- Direct measurement of the heat absorbed during protein denaturation due to increasing temperature
 - It detects the heat changes that occur when hydrogen bonds are broken and the protein unfolds
- Considered the 'gold standard' for characterization of protein thermal stability and assessment of biocomparability
 - 'Sees' the unfolding of all domains AND is labelfree – no dyes needed!

T_m is an indicator of stability ΔH is an indicator of stabilizing forces/energetics **ΔCp** is in indicator of structural changes before and after

© Malvern Panalytical 2017

Malvern

How does DSC work?

Protein unfolding is studied directly by

Why use DSC?

The universal biotherapeutic stability platform

An increase in T_M correlates well with increased shelf life and the developability of a biotherapeutic candidate

MicroCal DSC: The Gold Standard for HOS characterization

• In WHO Guidelines on the quality, safety, and efficacy of biotherapeutic protein products prepared by recombinant DNA technology (Replacement of Annex 3 of WHO Technical Report Series, No. 814) from 2013, intended to provide national regulatory authorities (NRAs) and manufacturers with guidance on the quality, safety and efficacy of rDNA-derived biotherapeutics for use in humans, it is stated:

The higher-order structure of the product should be examined using appropriate procedures such as circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR), fluorescence, differential scanning calorimetry, proton nuclear magnetic resonance (1H-NMR) and/or other suitable techniques such as hydrogen-deuterium exchange MS. FT-IR and CD in the far ultraviolet range deliver information on the secondary structure, whereas CD in the near ultraviolet reflects to some extent the tertiary and quaternary structure. When using these methods, their capabilities and limitations need to be considered (e.g. impact of protein concentration).

WHO recommends using DSC

MicroCal DSC: The Gold Standard for Biopharma

- "DSC is likely the strongest, most informative and relevant of all biophysical methods currently available."
 - Sorina Morar-Mitrica, Ph.D. GlaxoSmithKline The BioProcessing Summit, 2012

• "Thermal stability is one of the key product attributes that determine the inherent stability of the molecule. DSC remains as an unparalleled technique to assess the thermodynamic stability of proteins in a given buffer condition."

 Gokarn, et al, "Biophysical Techniques for Characterizing the Higher Order Structure and Interactions of Monoclonal Antibodies" In: State-of-the-Art and Emerging Technologies for Therapeutic Monoclonal Antibody Characterization, Biopharmaceutical Characterization: The NISTmAb Case Study, Volume 1201, 2015

Where does DSC sit in the biotherapeutic development pipeline?

MicroCal PEAQ-DSC improves productivity, and quality and transferability of data

MicroCal PEAQ-DSC

MicroCal PEAQ-DSC Automated

MicroCal PEAQ-DSC Protein Engineering and Formulation Development

- Mutant selection
 - Simple comparison of the T_m indicates which mutants are most stable
- Formulation selection
 - Simple comparison of the T_m indicates that the pH 3.02 formulation is the most stable

T_m screening: Initial pH/buffer screening during preformulation development with DSC

DSC – Effect of Formulation Excipients on Stability

Sugars	Conc. (g/ml) in Buffer T _m (°C)		
Mannitol	0.0517	46.7	
Lactose	0.0972	49.7	
Sucrose	0.0972	49.7	
Glucose	0.0512	49.6	
Salts	Conc. (g/ml) in Buffer	T _m (°C)	
NaCl	0.00584	53.1	
CaCl ₂	0.0111	41.1	
Combination	Conc. (g/ml) in Buffer	T _m (°C)	
Glucose/NaCl	0.0512/0.00584	52.2	

Control T_m (no excipients) = 48.1 °C

DSC – Effect of Formulation Excipients on Stability

Polymers	Conc. (g/ml) in Buffer	ffer T _m (°C)	
PVP (10,000)	0.01	48.9	
PEG (300)	0.0003	49.4	
PEG (1000)	0.001	49.1	
PEG (3350)	0.00335	48.7	
Dextran 40	0.0392	48.0	
Polyols	Conc. (g/ml) in Buffer	T _m (°C)	
Glycerol	0.01	48.7	
Ethanol	0.0051	48.6	
Ethanol	0.05	43.8	

Control T_m (no excipients) = 48.1 °C

DSC – Effect of Formulation Excipients on Stability

Amino Acids	Conc. (g/ml) in Buffer	T _m (°C)	
Glycine	0.01	46.2	
L-Lysine	0.01947	48.3	
L-Cysteine	0.01614	51.3	
L-Alanine	0.01187	46.2	
L-Arginine	0.0232	49.1	
Surfactants	Conc. (g/ml) in Buffer	T _m (°C)	
Pluronic [™] F68	0.0001	46.6	
Tween [™] 80	0.001	45.8	

Control T_m (no excipients) = 48.1 °C

Microcal DSC cell is Extremely Inert Allows wide array of excipients and proteins to be tested accurately and efficiently

- Microcal DSC are made of Tantalum, a highly rare and corrosion resistant element
- More inert, in the context of DSC experiments, than platinum
- Maximises the range of excipients that can be assessed – compatible with all common bioformulation components

Malvern

Panalytical

MicroCal PEAQ-DSC candidate selection

- Improved cleaning routines increase productivity
- NISTMab was run at ~0.05 mg/mL. 56 T_Ms were obtained from 64 measurements in 2 days (18 μ g loaded in each well/96 well plate)
- Detect the transitions that spectroscopic techniques miss!

Use the Gold Standard first – save time and sample

MicroCal PEAQ-DSC

Formulation Screening

- Reference scans run intermittently through the series mean verifiable, optimal performance
- Efficient cleaning routines increase productivity
- 'Rule of thumb': samples of 0.5 mg/mL (325 $\mu\text{L})$ can often be analyzed automatically- no user input required

Automatic analysis = 2x productivity and more robust decision making, with less expertise needed!

MicroCal PEAQ-DSC Manufacturing Support

 DSC has been found to be the best technique for monitoring even primary structure changes or deterioration in a biotherapeutic product

Now these methods can be transferred from support functions into manufacturing (GxP) departments (PEAQ-Smart and PEAQ-Compliance)

- Morar-Mitrica et al., BioPharma Asia, July/August 2013, 46-55
- Arthur *et al*. J Pharm Sci, vol 104, 1584-1554 (2014)

MicroCal PEAQ-DSC Manufacturing Support

MicroCal PEAQ-DSC Manufacturing Support

• DSC is sensitive and reproducible enough to assess batch to batch **biocomparability** in manufacturing

Change in process did not affect product quality..... and now can be used directly by manufacturing

MicroCal PEAQ-DSC Biocomparability studies for biosimilar approval – Tm & ΔH

- A number of successful applications have used DSC data to support biosimilarity submissions- for example
 - Amgen biosimilar for Adalimumab
 - Benepali for Embrel
 - Remsima for Remicade
- Neopogen (innovator) vs Zarzio (biosimilar)

MicroCal PEAQ-DSC Biocomparability studies for biosimilar approval – Tm & ΔH

DSC thermograms of different lots of CT-P13 (Remsima) and the RMP (Remicade reference product).

The similar thermal unfolding profiles and thermal transition midpoint temperature suggest that the thermal stability and conformation of CTP13 batches are comparable to those of the RMP.

Jung, et al, mAbs, 6, 1163 (2014)

MicroCal PEAQ-DSC Comparability Studies even for DDS – Liposome Phase Transition Temp.

Good practices for studying the stability of liposomes...; Margaride Bastos, Nanostructures & Self-Organisation R&D Group, Dept. Chem and Biochem, University of Porto.

Liposome Drug Products

Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER)

> > April 2018 Pharmaceutical Quality/CMC

- 2. Physicochemical Properties
 - Morphology of the liposomes including, if applicable, lamellarity determination.
 - b. Surface characteristics of the liposomes, as applicable, e.g., pegylation.
 - c. Net charge, typically measured as zeta potential of the liposomes.
 - d. Drug product viscosity.
 - e. Parameters of the contained drug.
 - f. Particle size (i.e., mean and distribution profile), preferably defined on the basis of volume or mass if particle density is known.

g. Liposome phase transition temperature.

MicroCal PEAQ-DSC Application Advantages

Applicatures	Supporting features	Benefits	
Candidate selection	PEAQ-Performance, PEAQ-Smart	 Increased productivity Less expertise required More gold standard DSC No reliance on less robust stability assays Better Decisions 	
Formulations	PEAQ-Performance, PEAQ-Smart		
Process Development	PEAQ-Performance, PEAQ-Smart		
Manufacturing support	PEAQ-Performance, PEAQ-Smart PEAQ-Compare, (PEAQ-Compliance)	Quantitative tools for comparing dataTransferability of experimental	
Biosimilarity	PEAQ, Performance, PEAQ-Smart PEAQ-Compare, (PEAQ-Compliance)	 protocols Transferability of analysis methods between people, departments and sites DSC is more sensitive for detecting changes in HOS 	
Manufacturing	PEAQ Performance, PEAQ-Smart PEAQ-Compare, PEAQ- Compliance	 21 CFR part 11 compliant data for regulatory submissions Less method development Improved methods for monitoring certain CTQs (critical to quality attributes) 	

Summary

- High data integrity
 - 21 CFR Part 11
- Increased productivity
 - More use of 'gold standard' thermal stability assay; minimized reliance on less robust spectroscopic methods
 - Facilitates demonstration that method is 'fit for purpose'
- Increased transferability of knowledge
 - More robust decisions
 - Less time spent on method development and validation
- Strengthened biosimilarity and biocomparability submissions
 - Pass/fail biocomparability tool
 - DSC is now more sensitive to changes in Higher Order Structure (HOS)

A DSC for pharmaceutical development

Pays for itself in 1 hr to 6 months

Applications	Assumptions-per project	Savings-per project	Annual savings for dept. with 20 projects per year
Candidate selection Formulations Process Development	 20 % increase productivity of 2 people - 1 MW False positives- 1 MW Removing analytical step- 1 MW False negatives-? 	 \$3 K \$3K \$3K ? 	• \$180K
Manufacturing support Biosimilarity	 Method development costs- 4 MW 2 fold increase productivity of an expert – 2MW Decrease time of submissions- 4 MW 	 \$12K per project \$6K per project \$12K per project 	• \$600K
Manufacturing	 Method development costs 4 MW Reduced submission time/ less resubmissions -4 MW 	\$12K per project\$12K per project	• ~\$480K
Alternatively	\$1.5 Billion year sales200 'selling days' per year	\$7.5 M daily revenue will yield at least \$1.5 M in profit	 Reach market 1 day earlier- ROI in about 1 hour
In terms of pure research	 20 % increase in impact factor (citation points per paper) 		

Different temp. different effect? Is temperature-stress data always representative of what happens at lower temp?

- Though DSC allows us to assess stability **directly**, formulation behaviour is dependent on temperature
 - For example, NaCl destabilse Urc at 60 °C but not at 40 °C
- How can we screen stability at lower temperatures?

Malvern

Panalytical

Caves et al. (2013) Biochemistry 52: 497-507
Stopping Aggregation Formulation Optimisation

LATE STAGE SCREENING Information is key

EARLY STAGE SCREENING Sample Consumption is key INTERACTION ANALYSIS The fundamentals of formulation

600

Viscosizer TD - Overview

- Orthogonal biophysical technique for solution characterization
 - Molecular size, conformational stability and selfassociation, and relative viscosity
- Low concentration measurements (µg quantities)
 - Ultra-low sample volumes of 40nl (sizing) and 6 μl (viscosity)
- Automated, multi-sample analysis with walk-away operation
 - Precise environmental control for sample storage and measurement (4 C - 40 C)
- Sample analysis without dilution or filtration
 - Measurements not adversely affected by the presence of a small amount of aggregates, excipients or surfactants
- Label-free characterization of target biomolecules in complex solutions
 - Small molecules, peptides and proteins, and samples with mixtures of these species

Viscosizer TD – Oven (detector head and capillary)

1	Capillary Inlet	5	Fiber Optic Cable
2	Capillary Outlet	6	Air Flow
3	Detector Head	7	Temperature Sensor
4	Capillary	8	Cartridge

Viscosizer TD – Capillary cartridge

Understanding Taylor Dispersion Analysis, White paper; download from www.malvern.com

Understanding Taylor Dispersion Analysis, White paper; download from www.malvern.com

Convection ••••• Diffusion •••••

Convection •••• Diffusion •••••

Convection •••• Diffusion •••••

Convection •••• Diffusion •••••

Convection •••• Diffusion •••••

Convection •••• Diffusion •••••

• The faster this diffusion process occurs, the narrower the plug will remain

Convection ──► Diffusion ──►

SMALL MOLECULES

LARGE MOLECULES

- Small molecules diffuse quickly in the radial direction
- Diffusion works against dispersion
- Keeps the plug compact and peak narrow

- Diffusion occurs slowly in the radial direction
- Plug dispersion is more dominant
- Peak broadens

Molecular diffusion coefficient (D) is inversely proportional to peak width (σ_t) at the detection window

 R_c – capillary radius t_0 – residence time

Understanding Taylor Dispersion Analysis, White paper; download from www.malvern.com

 $R_{\rm h} = \frac{4k_{\rm B}T(\tau_{2^2} - \tau_{2^2})}{\pi\eta r^2(t_1 - t_2)}$

 $R_{h} = Hydrodynamic radius$ $k_{B} = Boltzmann's constant$ T = Temperature $\tau = Peak width$ $\eta = Viscosity$ r = Capillary radius t = Peak elution time

Understanding Taylor Dispersion Analysis, White paper; download from www.malvern.com

Compatible:

- ✓ Surfactants
- ✓ Turbid solutions
- Coloured solutions and protein samples
- ✓ High concentrations
- ✓ Non-aqueous solvents (e.g. 100% DMSO)
- ✓ Samples with aggregates
- ✓ High refractive index samples
- ✓ Small Molecules >75 Da
- ✓ Low concentrations

Particle size range*	0.1nm	1nm	10nm	100nm	1µm	10µm	100µm	1mm	10mm
Taylor Dispersion Analysis 0.2nm to >20nm		Viscos	izer						
Dynamic Light Scattering <1nm to >1µm			Zeta	sizer					
Nanoparticle Tracking Analysis <30nm to >1µm			ľ	NanoSig	ht				
Resonant Mass Measurement** 50nm to 5µm				Archim	edes**				
Laser Diffraction <100nm to >2mm					Ma	asters Insite Spray	izer, c, tec		
Spatial Filter Velocimetry <50µm to 6mm							Par	sum	
Automated Imaging <1µm to >3mm						Mor Sysi	phologi nex FPI	Å	

*all particle size ranges are sample dependent

**particle size ranges are sample and sensor dependent.

Conformational change with cofactor molecules

Overlay of Taylorgrams showing change in hydrodynamic radius of Insulin after the addition of EDTA to remove Zinc ions (Absorbance normalised to 1)

Taylor Dispersion Analysis -Proteins

Hydrodynamic radius of Insulin measured by TDA in a range of buffer conditions. Insulin concentration is 2mg/ml (unless stated).

Assessing the self-association and stability of Insulin under varying formulation conditions using Taylor Dispersion Analysis, Application Note; download from www.malvern.com

Taylor Dispersion Analysis -Mixtures

Taylor Dispersion Analysis can resolve components close in size without separation

Taylor Dispersion Analysis -Mixtures

R _h of monomer/nm	Approximate sample aggregation (%)	Measured sample aggregation (%)
	3	3.5 ± 0.2
3.5	4	3.9 ± 0.3
(PBS buffer)	6	6.8 ± 0.4
	9	7.7 ± 0.7
F	50	57.0 ± 0.3
(Arginino buffor)	75	81.8 ± 0.2
(Arginne buner)	100	97.2 ± 5.7

Taylor Dispersion Analysis resolves monomers in the presence of aggregates, and determines % sample aggregation

 Viscosizer TD can measure sub nanometre molecules at low concentrations with M_w < 0.1 kDa

radius [nm]

Small Molecule	Measured D _h (nm)	Molecular Mass (Da)	
Glycine	0.50	75	
Nicotinic Acid	0.56	123	
Caffeine	0.64	194	
Warfarin	0.92	308	

Hawe et al. (2011) Pharm. Res. 28: 2302-2310

© Malvern Panalytical 2017

TDA for Small Molecule Therapeutics

Measurement of KD Dynamic Virial Coefficient

• Virial coefficients used to find wide application to, for instance, crystal screening

• The more positive the coefficient, the higher the stability of the formulation

 Improvements in Crystallisation and formulation robotics, however, made the old way of measuring virial coefficients redundant

• Viscosizer gives us a newer, more efficient means of measurement

Exploiting the Gradient

- Boltzmann-Matano Analysis
 - This analysis model allows the calculation of Diffusion, from a gradient generated using Fick's Law of Diffusion
 - Calculation of diffusion distance as a function of concentration

- Value reported is Dispersion Coefficient (k) as sample is undergoing both convection and diffusion
- Application of this value to Taylor's Diffusion equation provides Diffusion (D) as a function of concentration $r^2 u^2$

$$D = \frac{r^{-}u^{-}}{48k}$$

Diffusion Interaction (k_D) Analysis

Calculated using the gradient

Diffusion Interaction (k_D) Analysis

• Comparison of k_D data from TDA and DLS

	<i>k_D</i> from TDA (10-2 mL mg-1)	<i>k_D</i> from DLS (10-2 mL mg-1)	<i>D</i> ₀ from TDA (μm² s-1)	<i>D</i> ₀ from DLS (μm² s-1)
BSA in lodide	1.61 +/- 0.05	1.30 +/- 0.01	54.4 +/- 0.2	59.7 +/- 0.4
BSA in Sulfate	0.93 +/- 0.04	0.75 +/- 0.01	54.3 +/- 0.3	59.7 +/- 0.4

Results show consistent data between DLS and TDA assessment of k_D

Diffusion Interaction (k_D) Analysis

- Increasing salt concentration results in a reduction in measured $k_{\rm D}$ value for lysozyme

Diffusion Interaction (k_D) Analysis

- Antibody (mAb G4) in two buffer formulations
 - Buffer A Acetate pH 5.2
 - Buffer B Phosphate pH 6.2

Acetate pH 5.2					
Replicate 1	23.41				
Replicate 2	23.69				
Replicate 3	24.53				
Average	23.88				
StDev	0.58				

Phosphate pH 6.2					
Replicate 1	2.59				
Replicate 2	2.46				
Replicate 3	2.24				
Average	2.43				
StDev	0.18				

Visosizer TD – KD as a true stability screening method NIST mAb data

Data Summary

Sample	Gradient	Y-Intercept	kD	Average	SD
	2.445	38.896	62.868		4.3
10mg/ml	2.491	38.923	64.011	60.7	
40mg/mL	2.424	39.451	61.448		
	2.316	42.518	54.480		
	2.160	43.365	49.808	46.5	2.9
10	2.052	44.084	46.557		
10mg/mL	2.076	44.056	47.116		
	1.945	45.591	42.658		

Sample Consumption

Test	Volume Used (µL)	Stock Conc (mg/mL)	Mass Used (µg)
DLS	50	40	2000
TDA High Conc	12	40	480
TDA Low Conc	12	10	120

Relative viscosity Another Stability Indicator

Viscosizer TD - relative viscosity measurement concept

Microcapillary analogue of glass U-tube relative viscometer principle using Poiseuille's Law

Time sample flow between two windows under constant uP and reference with sample of known viscosity

- ✓ Low volume (~6ul per measurement)
- ✓ Automated
- ✓ Temperature controlled
- ✓ Newtonian liquids
- ✓ Suitable for low viscosity and low concentration protein solutions
- ✓ Fast measurements with high resolution and repeatability in this regime

Principles of relative viscosity measurements using Viscosizer TD, Technical Note; download from www.malvern.com

Relative viscosity Another Stability Indicator

Saito, Uchiyama et al., 2012 Pharm. Res.

Relative viscosity – mAb formulations

Bar chart showing the differences in mean viscosity for mAbs samples at 1mg/ml in different buffers with the addition of sucrose and Tween 20 as excipients

Relative viscosity screening of monoclonal antibody (mAb) formulations at low concentration and low viscosity for early stage developability, Application Note; download from www.malvern.com

Early developability screen of Ab candidates

Alexandra Lavoisier & Jean-Marc Schlaeppi (2015) Early developability screen of therapeutic antibody candidates using Taylor dispersion analysis and UV area imaging detection, mAbs, 7:1, 77-83, <u>http://dx.doi.org/10.4161/19420862.2014.985544</u>

Stopping Aggregation – Summary

 Viscosizer gives an excellent method (TDA) for early stage formulation screening

- Extremely low sample requirements
- 3 stability indicating parameters generated orthogonal analysis
- Stability prediction under storage conditions
- DSC the gold standard for later stage formulation, where sample availability is less of an issue
 - Direct 'gold standard' measure of stability
 - Critical for biocomparability studies also

The fundamentals of Formulation **Excipient Binding**

- We have discussed techniques that measure stability but why do certain excipients stabilise certain protein
 - Do they bind in a specific way?
 - Is the excipient binding at all, or simply altering stability through, for instance, its affect on water structure
- Knowledge of excipient binding parameters gives a deeper understanding of the interactions that cause certain excipients to stabilize protein
Stopping Aggregation Formulation Optimisation

LATE STAGE SCREENING Information is key

EARLY STAGE SCREENING Sample Consumption is key INTERACTION ANALYSIS The fundamentals of formulation

600

The fundamentals of Formulation **Excipient Binding**

- Allows determination of the lowest possible conc. of excipient needed to 'saturate' the protein and attain the stabilizing effect
- Minimizing conc. of excipient in a formulation reduces costs
- Also reduces the level of additives to be administered to a patient

Microcal ITC Isothermal Titration Calorimetry

- Gives comprehensive label-free analysis of binding
- Information rich data allows intelligently designed lead optimisation
- Fully automatable ideal for screening purposes

Microcal ITC Isotherm

- Stoichiometry (n) Molar Ratio (x-axis) at centre of isotherm
- Enthalpy change of binding (∆H) Total energy change during experiment (Y-axis)
- Binding affinity (Ka) Slope
- Entropy change (Δ S) and Gibbs Free energy change (Δ G) calculated from these values

Malvern

> Titration of 50 mM polysorbate-80 into 25 mg/ml **ProX protein**

Ka = 1430

$$\Delta H$$
 = -6.3 kcal/mol
 ΔS = -6.7 Kcal/mol
n = 2.6

10-fold excess of polysorbate-> 80 needed to saturate ProX

II.

Formulation Development – Excipient Binding Summary

 10-fold molar excess of polysorbate-80 per molecule of protein was sufficient to saturate the protein – so only add a 10-fold excess to the formulation

• The binding parameters may also be used to predict the *in vivo* behavior of the protein-excipient complex:

Weak association constants measured by ITC suggest that the **ProX/polysorbate-80 complex will dissociate due to dilution** upon entering the bloodstream with no effect on the biological activity of the protein drug

Lead Optimisation

- Major application of PEAQ ITC is drug lead optimization
- Once a drug has been identified for a target, the developer may want to optimize its binding properties
- The wealth of information given by ITC makes it ideally suited to the purpose.

The best drugs have more enthalpic binding

• Enthalpic contribution increases from the first statin to be approved to the most recent, entropic contribution declines

Introducing
 hydrogen bonds may
 be more effective than
 introducing
 hydrophobic bonds

S Malvern Panalytical 2017

Malvern

Efficient assessment of Binding interactions From excipients to drug-target interactions

- Label-free information rich analysis
- Automated data qualification
- Robust automated data analysis.
- Robust batch analysis of multiple data sets
- Multiple inbuilt tools to graphically visualize the data
- New features to support common applications such as Structureactivity relationships (SAR)

Stopping Aggregation Formulation Optimisation

LATE STAGE SCREENING Information is key

EARLY STAGE SCREENING Sample Consumption is key INTERACTION ANALYSIS The fundamentals of formulation

600

Stopping Aggregation Measuring and Predicting Stability

